

SHENZHEN CLOUDCHILD TECHNOLOGY CO., LTD

PDFNWB5×6-8L Plastic-Encapsulate MOSFETS

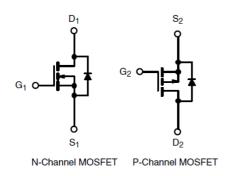
CCM2E30D04T N- and P-Channel Power MOSFET

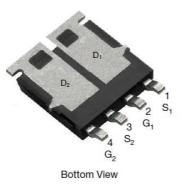
PRODUCT SUMMARY								
N-CHANNEL P-CHANNEI								
V _{DS} (V)	40	-40						
$R_{DS(on)}$ (m Ω) at V_{GS} = ± 10 V	7.5	26						
$R_{DS(on)}$ (m Ω) at $V_{GS} = \pm 4.5 \text{ V}$	9.5	38						
I _D (A)	30	-30						
Configuration	N- and P-Pair							

DESCRIPTION

The CCM2E30D04T provides excellent $R_{DS(ON)}$ with low gate charge.

It can be used in a wide variety of applications.


FEATURES


- TrenchFET[®] Power MOSFET
- AEC-Q101 Qualified^d
- 100 % Rg and UIS Tested

APPLICATIONS

- Solenoid valve drive
- High-frequency switching

EQUIVALENT CIRCUIT

MARKING

0

15

mm

CCM2E30D04T

XXXXXXX

5.13 mm

CCM2E30D04T = PART MUMBER CCM= Cloudchild mosfet 2=2PCS MOSFET E=Packing form 30= ID30A; D=N+P MOSFET; 04=Bvds 40V; T= Trench XXXX= manufacture year week; XXX= N Mosfet wafer LOT NUM

ABSOLUTE MAXIMUM RATINGS ($T_{\rm C}$ = 25 °C, unless o	therwise not	ed)			
PARAMETER	SYMBOL	N-CHANNEL	P-CHANNEL	UNIT		
Drain-Source Voltage		V _{DS}	40	-40	V	
Gate-Source Voltage		V _{GS}	± 20		-V	
Continuous Drain Current ^a	T _c = 25 °C		30	-30		
Continuous Drain Current ^a	T _C = 125 °C	ID	30	-20		
Continuous Source Current (Diode Conduction	ls	30	-30	А		
Pulsed Drain Current ^b		I _{DM}	120	-120		
Single Pulse Avalanche Current		I _{AS}	12	-11.5		
Single Pulse Avalanche Energy	Single Pulse Avalanche Energy L = 0.5 mH		36	33	mJ	
Maximum Power Dissipation ^b	Tc = 25 °C	D	48 48		14/	
	T _C = 125 °C	PD	16	16	W	
Operating Junction and Storage Temperature	T _J , T _{stg}	-55 to +175		°C		
Soldering Recommendations (Peak Temperat	ure) ^f		260			

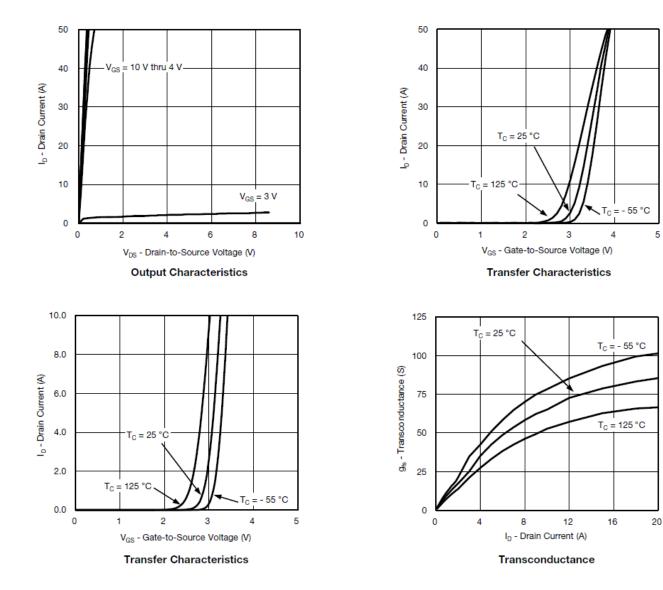
THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	N-CHANNEL	P-CHANNEL	UNIT
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	85	85	°C/W
Junction-to-Case (Drain)		R _{thJC}	3.1	3.1	C/W

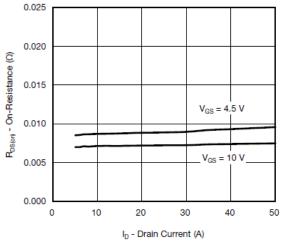
Notes

a. Package limited.
b. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
c. When mounted on 1" square PCB (FR4 material).
d. Parametric verification ongoing.
e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

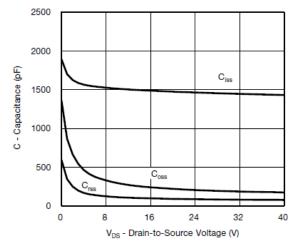
BARAMETER	0/4/2 01		TEAT AGNIDITIONS		MIN.	TYP.	MAN		
PARAMETER	SYMBOL		TEST CONDITIONS				MAX.	UNIT	
Static	-				1				
Drain-Source Breakdown Voltage	V _{DS}		= 0 V, I _D = 250 µA	N-Ch P-Ch	40	-	-	_	
ç		$V_{GS} = 0 V, I_D = -250 \mu A$			-40	-	-	V	
Gate-Source Threshold Voltage	V _{GS(th)}		: V _{GS} , I _D = 250 μA	N-Ch	1.0	1.5	3.0	_	
	- 65(iii)	V _{DS} =	V _{GS} , I _D = - 250 μA	P-Ch	-1.1	-1.6	-2.2	_	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V. V_{GS} = \pm 20 V$		N-Ch	-	-	± 100	nA	
	.033		- ,	P-Ch	-	-	± 100		
		$V_{GS} = 0 V$	V _{DS} = 40 V	N-Ch	-	-	1		
		$V_{GS} = 0 V$	V _{DS} = -40 V	P-Ch	-	-	-1		
Zero Gate Voltage Drain Current	lace	$V_{GS} = 0 V$	$V_{DS} = 40 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	N-Ch	-	-	50	μA	
Zero Gale Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = -40 \text{ V}, \text{T}_{\text{J}} = 125 ^{\circ}\text{C}$	P-Ch	-	-	-50	μΛ	
		$V_{GS} = 0 V$	V _{DS} = 40 V, T _J = 175 °C	N-Ch	-	-	150		
		$V_{GS} = 0 V$	V _{DS} = -40 V, T _J = 175 °C	P-Ch	-	-	-150		
On State Ducin Gumanta		$V_{GS} = 10 V$	$V_{DS} \geq 5 \ V$	N-Ch	25	-	-	_	
On-State Drain Current ^a	I _{D(on)}	V _{GS} = -10 V	$V_{DS} \leq 5 \ V$	P-Ch	-25	-	-	A	
	R _{DS(on)}	$V_{GS} = 10 \text{ V}$	ID = 10A	N-Ch	-	7.5	8.5		
		$V_{GS} = -10 \text{ V}$	ID = -10A	P-Ch	-	26	33		
		V _{GS} = 10 V	ID = 10 A, TJ = 125 °C	N-Ch	-	-	13.4		
		V _{GS} = -10 V	ID = -10 A, TJ = 125 °C	P-Ch	-	-	37		
Drain-Source On-State Resistance ^a		V _{GS} = 10 V	ID = 10 A, TJ = 175 °C	N-Ch	-	-	17	mΩ	
		V _{GS} = -10 V	ID = -10 A, TJ = 175 °C	P-Ch	-	-	45		
		$V_{GS} = 4.5 V$	ID = 10 A	N-Ch	-	9.5	12.3		
		V _{GS} = -4.5 V	ID = -10 A	P-Ch	-	37	42		
		VDS	= 15 V, ID = 10 A	N-Ch	-	65	-		
Forward Transconductance ^b	9 _{fs}		= -15 V, ID = -10 A	P-Ch	-	16	-	S	
Dynamic ^b			·					-	
-	_	$V_{GS} = 0 V$	V _{DS} = 20 V, f = 1 MHz	/ _{DS} = 20 V, f = 1 MHz N-Ch - 1474 184	1843				
Input Capacitance	C _{iss}	$V_{GS} = 0 V$	V _{DS} = -20 V, f = 1 MHz	P-Ch	1	1302	1628	1	
	C _{oss}	$V_{GS} = 0 V$	V _{DS} = 20 V, f = 1 MHz	N-Ch	-	218	273	1	
Output Capacitance		$V_{GS} = 0 V$	$V_{DS} = -20 \text{ V}, \text{ f} = 1 \text{ MHz}$	P-Ch	-	222	278	pF	
	C _{rss}	$V_{GS} = 0 V$	$V_{DS} = 20 \text{ V}, f = 1 \text{ MHz}$	N-Ch	-	89	111	-	
Reverse Transfer Capacitance		$V_{GS} = 0 V$ $V_{DS} = -20 V, f = 1 MHz$		P-Ch	Ł	154	193	-	

Total Gate Charge ^c	0	$V_{GS} = 10 \text{ V}$	$V_{DS} = 20 \text{ V}, I_D = 10 \text{ A}$	N-Ch	-	25.5	38.3	
Total Gate Charge	Qg	V_{GS} = -10 V	$V_{DS} = -20 V$, $I_D = -10 A$	P-Ch	-	30.2	45	
Gate-Source Charge ^c	0	$V_{GS} = 10 \text{ V}$	$V_{DS} = 20 \text{ V}, I_D = 10 \text{ A}$	N-Ch	-	4.4	-	nC
Gale-Source Charge	Q_gs	$V_{GS} = -10 V$	$V_{DS} = -20 V, I_D = -10 A$	P-Ch	-	4.1	-	
Gate-Drain Charge ^c	0	$V_{GS} = 10 \text{ V}$	$V_{DS} = 20 \text{ V}, I_D = 10 \text{ A}$	N-Ch	-	4.3	-	
Gale-Drain Charge*	Q_{gd}	$V_{GS} = -10 V$	$V_{DS} = -20 V$, $I_{D} = -10 A$	P-Ch	-	7.4	-	
Gate Resistance	D	f = 1 MHz		N-Ch	0.65	1.37	2.1	0
Gale Resistance	Rg			P-Ch	3.1	6.15	9.5	52

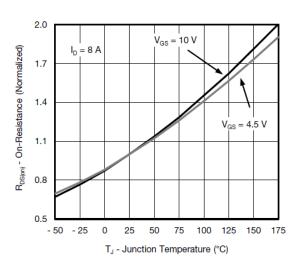

Notes

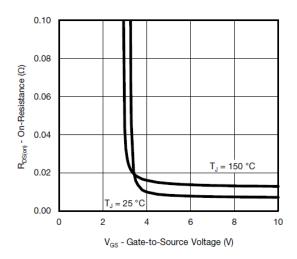

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

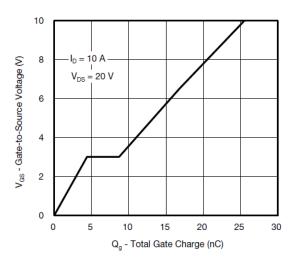
b. Guaranteed by design, not subject to production testing.

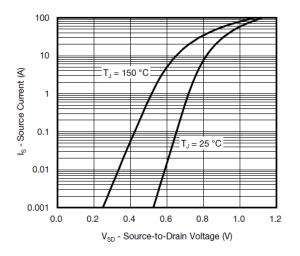

c. Independent of operating temperature.

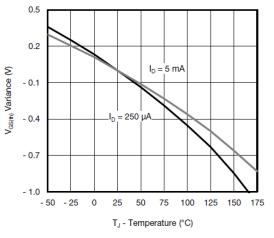
N-CHANNEL TYPICAL CHARACTERISTICS (T_A = 25 $^{\circ}$ C, unless otherwise noted)

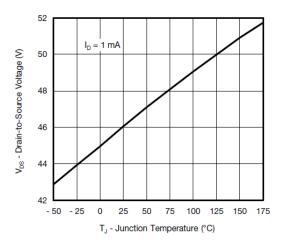


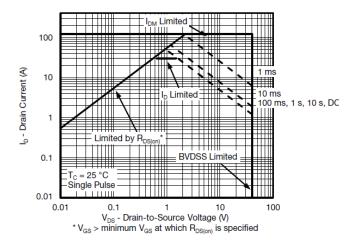

On-Resistance vs. Drain Current

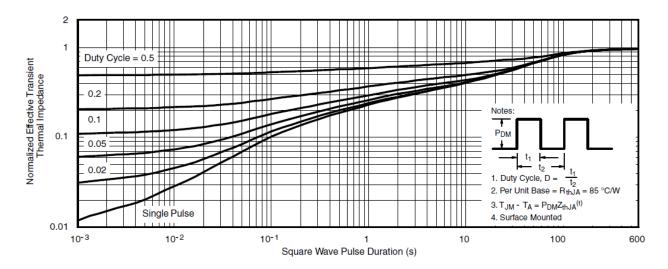

Capacitance

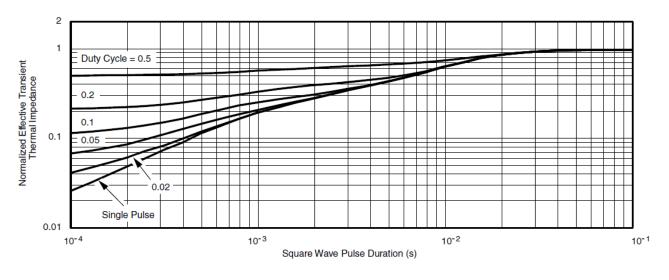

On-Resistance vs. Junction Temperature


On-Resistance vs. Gate-to-Source Voltage


Gate Charge

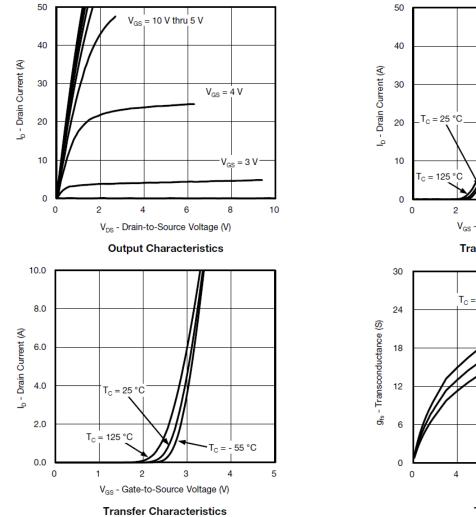

Source Drain Diode Forward Voltage

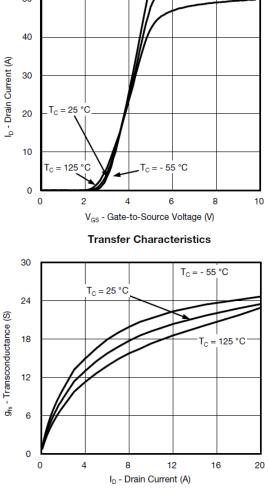

Threshold Voltage


Drain Source Breakdown vs. Junction Temperature

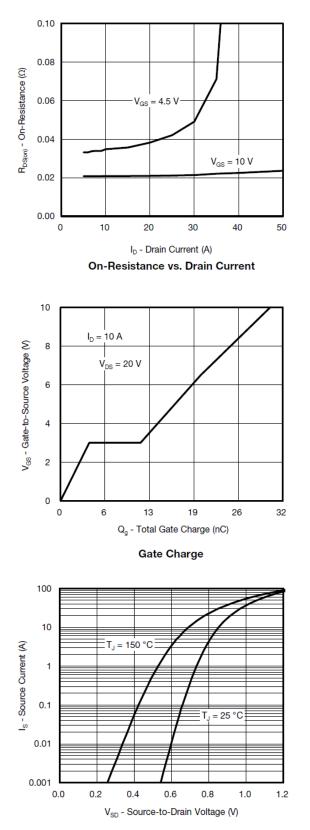
Safe Operating Area

Normalized Thermal Transient Impedance, Junction-to-Ambient

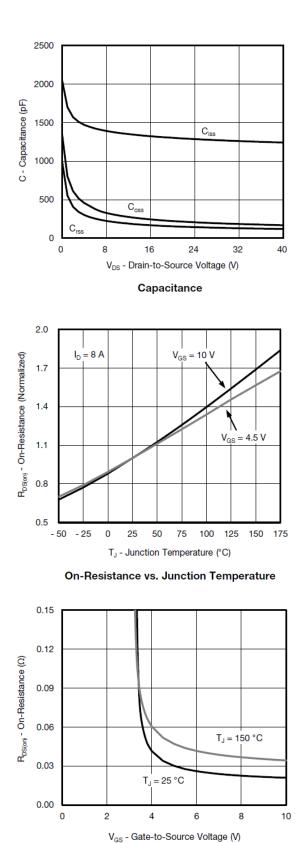

Note

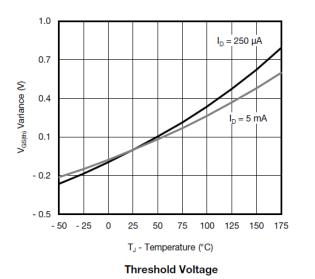

The characteristics shown in the two graphs

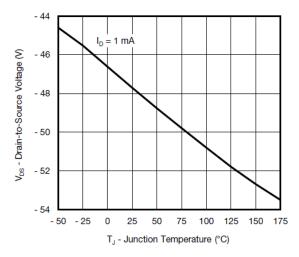
- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)


Normalized Transfert Thermal Impedance Junction-to-Case (25 °C)
 Normalized Transfert Thermal Impedance Junction-to-Case (25 °C)
 are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transfert thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

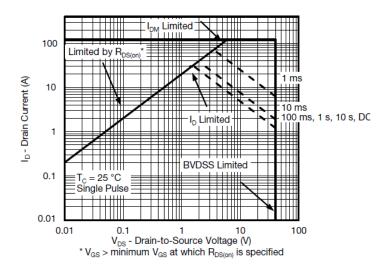
P-CHANNEL TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)



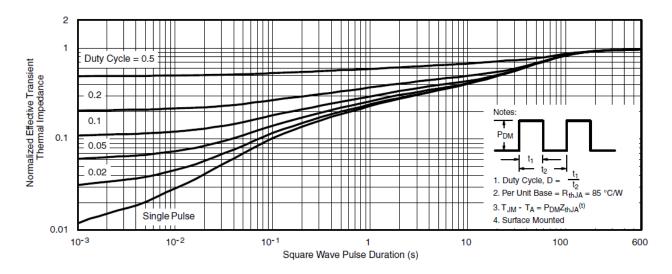

Transconductance

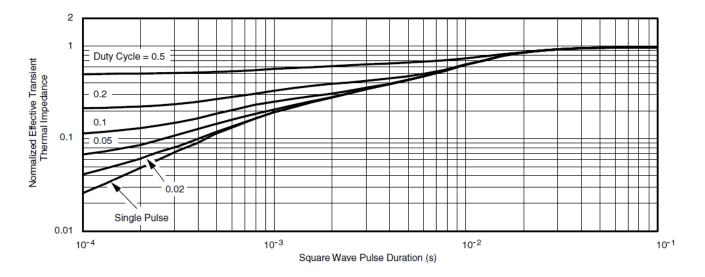


Source Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage

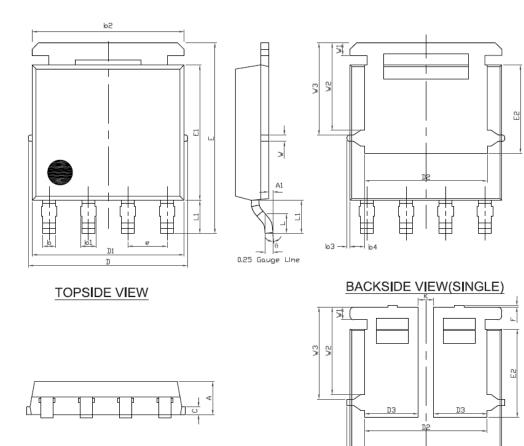



Drain Source Breakdown vs. Junction Temperature

Safe Operating Area

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case


Note

• The characteristics shown in the two graphs

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

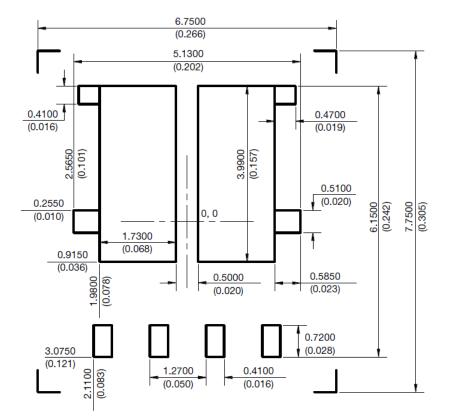
Normalized Transient Thermal Impedance Junction-to-Case (25 °C)
 are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

Package Outline Dimensions PDFNWB5×6-8L

b4

b3

1


Ħ

÷.

Ħ

DIM		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	1.00	1.07	1.14	0.039	0.042	0.045		
A1	0.00	-	0.127	0.00	-	0.005		
b	0.33	0.41	0.48	0.013	0.016	0.019		
b1	0.44	0.51	0.58	0.017	0.020	0.023		
b2	4.80	4.90	5.00	0.189	0.193	0.197		
b3		0.094	•		0.004			
b4		0.47			0.019			
с	0.20	0.25	0.30	0.008	0.010	0.012		
D	5.00	5.13	5.25	0.197	0.202	0.207		
D1	4.80	4.90	5.00	0.189	0.193	0.197		
D2	3.86	3.96	4.06	0.152	0.156	0.160		
D3	1.63	1.73	1.83	0.064	0.068	0.072		
е		1.27 BSC			0.050 BSC			
E	6.05	6.15	6.25	0.238	0.242	0.246		
E1	4.27	4.37	4.47	0.168	0.172	0.176		
E2	2.75	2.85	2.95	0.108	0.112	0.116		
F	-	-	0.15	-	-	0.006		
L	0.62	0.72	0.82	0.024	0.028	0.032		
L1	0.92	1.07	1.22	0.036	0.042	0.048		
К		0.51		0.020				
W		0.23			0.009			
W1	0.41			0.016				
W2		2.82			0.111			
W3		2.96			0.117			
q	0°	-	10°	0°	-	10°		

RECOMMENDED MINIMUM PAD FOR PDFNWB5×6-8L

Recommended Minimum Pads Dimensions in mm (inches) Keep-out 6.75 (0.266) x 7.75 (0.305)

NOTICE

Cloudchild Tech reserve the right to make modifications, enhancements, improvements, crrections or other changes without further notice to any product herein. Cloudchild Tech does not assume any liability arising out of the application or use of any product described herein.

Shenzhen Cloudchild Technology Co., Ltd. (short for Cloudchild) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Cloudchild products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that Cloudchild products are used within specified operating ranges as set forth in the most recent Cloudchild products specifications.