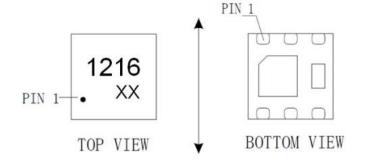


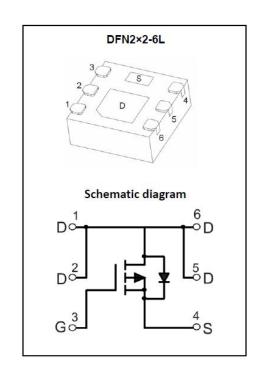
CHONGQING CLOUDCHILD TECHNOLOGY CO., LTD

DFN2×2-6L Plastic-Encapsulate MOSFET

CCMP1216 P-Channel Power MOSFET

V _{(BR)DSS}	R _{DS(on)TYP}	ID
-12V	12mΩ@-4.5V	161
	14mΩ@-2.5V	-16A


Feature

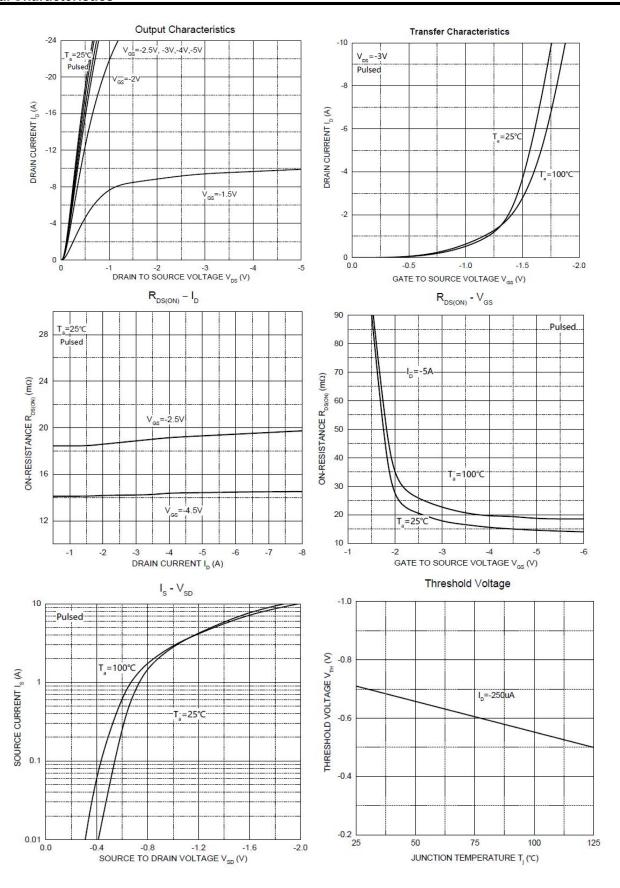

- Excellent R_{DS(ON)}
- Low Gate Charge
- TrenchFET Power MOSFET

Application

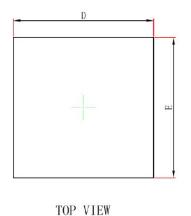
- DC/DC Converter
- Load Switch for Portable Devices
- Battery Switch

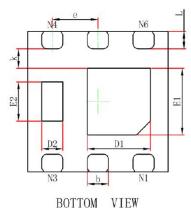
MARKING

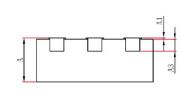
ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}$ C unless otherwise noted)


Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	-12	V
Gate-Source Voltage	V _{GS}	±10	V
Continuous Drain Current	ID	-16	А
Pulsed Drain Current ⁽¹⁾	Ірм	-65	А
Power Dissipation ⁽²⁾ (T _a =25°C)	Б	2.5	W
Maximum Power Dissipation ⁽³⁾⁽ T _c =25°C)	P _D	18	W
Thermal Resistance from Junction to Ambient ⁽⁴⁾	Reja	50	°C/W
Thermal Resistance from Junction to Case ⁽⁴⁾	Rejc	6.9	°C/W
Junction Temperature	TJ	150	℃
Storage Temperature	T _{STG}	-55~ +150	℃

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}$ C unless otherwise noted)


Parameter	Symbol	Test Condition	Min	Туре	Max	Unit	
Static Characteristics			•	•			
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =-250μA	-12			V	
Zero gate voltage drain current	IDSS	V _{DS} =-12V,V _{GS} = 0V			-1	μΑ	
Gate-body leakage current	I _{GSS}	V _{GS} =±10V, V _{DS} = 0V			±100	nA	
Gate threshold voltage ⁽⁵⁾	V _{GS(th)}	V _{DS} =V _{GS} , I _D =-250μA	-0.4	-0.7	-1	V	
Drain-source on-resistance ⁽⁵⁾	D	V _{GS} =-4.5V, I _D =-6.7A		12	18	mΩ	
Diam-source on-resistance	R _{DS(on)}	V _{GS} =-2.5V, I _D =-4.2A		14	27		
Forward tranconductance ⁽⁵⁾	g FS	V _{DS} =-10V, I _D =-6.7A		40		S	
Dynamic characteristics ⁽⁶⁾			·				
Input Capacitance	Ciss			1658			
Output Capacitance	Coss	V _{DS} =-6V,V _{GS} =0V,f =1MHz	354		pF		
Reverse Transfer Capacitance	Crss			341			
Gate resistance	Rg	f=1MHz		45		Ω	
Total Gate Charge	Qg			18	23		
Gate-Source Charge	Qgs	V _{DS} =-6V,V _{GS} =-4.5V,I _D =-5A	3		nC		
Gate-Drain Charge	Qgd			4.7			
Turn-on delay time	t _{d(on)}			33	40		
Turn-on rise time	t _r	t _r V _{DD} =-6V,V _{GEN} =-4.5V,I _D =-4A		31	40	no	
Turn-off delay time	t _{d(off)}	$R_L=6\Omega,R_{GEN}=1\Omega$		58	75	ns	
Turn-off fall time	t _f			26	35		
Source-Drain Diode characteristics							
Diode forward current	Is	T _C =25°C			-16	Α	
Diode pulsed forward current ⁽¹⁾	I _{SM}				-48	Α	
Diode Forward voltage ⁽⁴⁾	V _{DS}	V _{GS} =0V, I _S =-2A		-0.82	-1.2	V	


Notes:


- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. This test is performed with no heat sink at Ta=25°C.
- 3. This test is performed with infinite heat sink at T_c =25°C.
- 4. Surface mounted on FR4 board, t≤10S.
- 5. Pulse Test: Pulse With ≤300µs, Duty Cycle≤2%.
- 6. Guaranteed by design, not subject to production testing.

DFN2×2-6L Package Outline Dimensions

SIDE VIEW

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.700	0.800	0.028	0.031	
A1	0	0.050	0	0.002	
A3	2.03REF		0.008	BREF	
D	1.900	2.100	0.075	0.083	
E	1.900	2.100	0.075	0.083	
D1	0.800	1.000	0.031	0.039	
E1	0.850	1.050	0.033	0.041	
D2	0.200	0.400	0.008	0.016	
E2	0.460	0.660	0.018	0.026	
k	0.200MIN		0.008	BMIN	
b	0.250	0.350	0.010	0.014	
е	0.65BSC		0.026	STYP	
L	0.174	0.326	0.007	0.013	

NOTICE

Cloudchild reserve the right to make modifications, enhancements, improvements, crrections or other changes without further notice to any product herein. Cloudchild does not assume any liability arising out of the application or use of any product described herein.

ChongQing Cloudchild Technology Co., Ltd. (short for Cloudchild) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Cloudchild products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that Cloudchild products are used within specified operating ranges as set forth in the most recent Cloudchild products specifications.

Date of change	Rev#	revise content
2023/4/27	A/0	/