

CHONGQING CLOUDCHILD TECHNOLOGY CO., LTD

TO-263-2L Plastic-Encapsulate MOSFETS

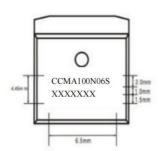
CCMA100N06S N-Channel Power MOSFET

V _{(BR)DSS}	R _{DS(on)} TYP	ID
60 V	2.8mΩ@10V	
	5.5mΩ@4.5V	100A

DESCRIPTION

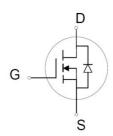
The CCMA100N06S uses advanced SGT technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications .

TO-263-2L 1. GATE 2. DRAIN 3. SOURCE


FEATURES

- Excellent package for good heat dissipation
- Ultra low gate charge
- Low reverse transfer capacitance
- Fast switching capability
- Avalanche energy specified
- AEC Q101 qualified

APPLICATIONS


- 12V/24V Automotive systems
- Motors,lamps and solenoid control
- Transmission control
- Power switching application

MARKING

CCMA100N06S =Part No. XXXXXXX = Code.

EQUIVALENT CIRCUIT

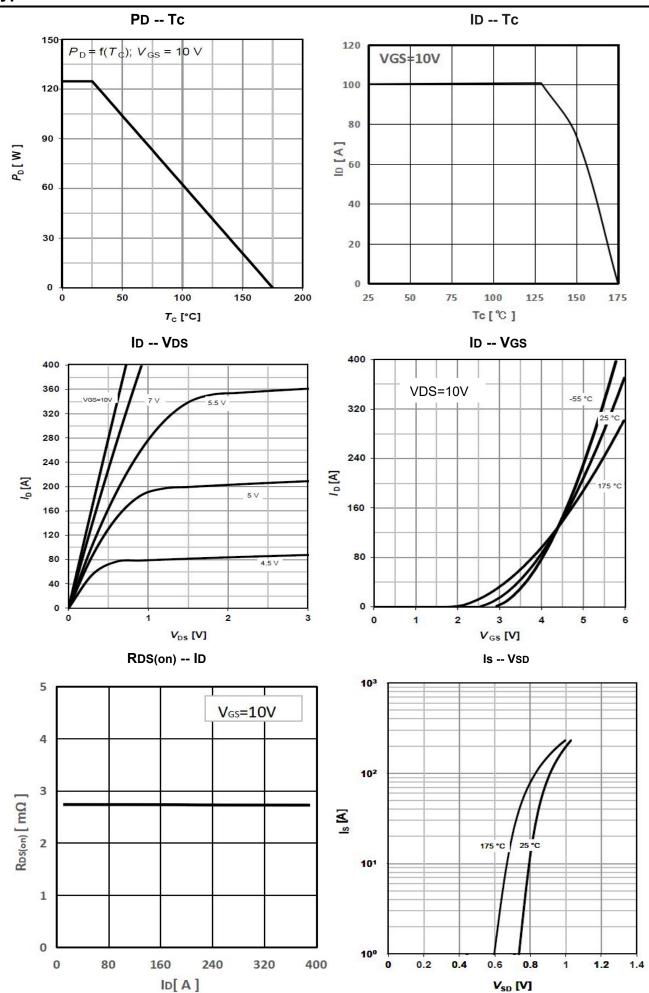
ABSOLUTE MAXIMUM RATINGS(T_c=25℃ unless otherwise noted)

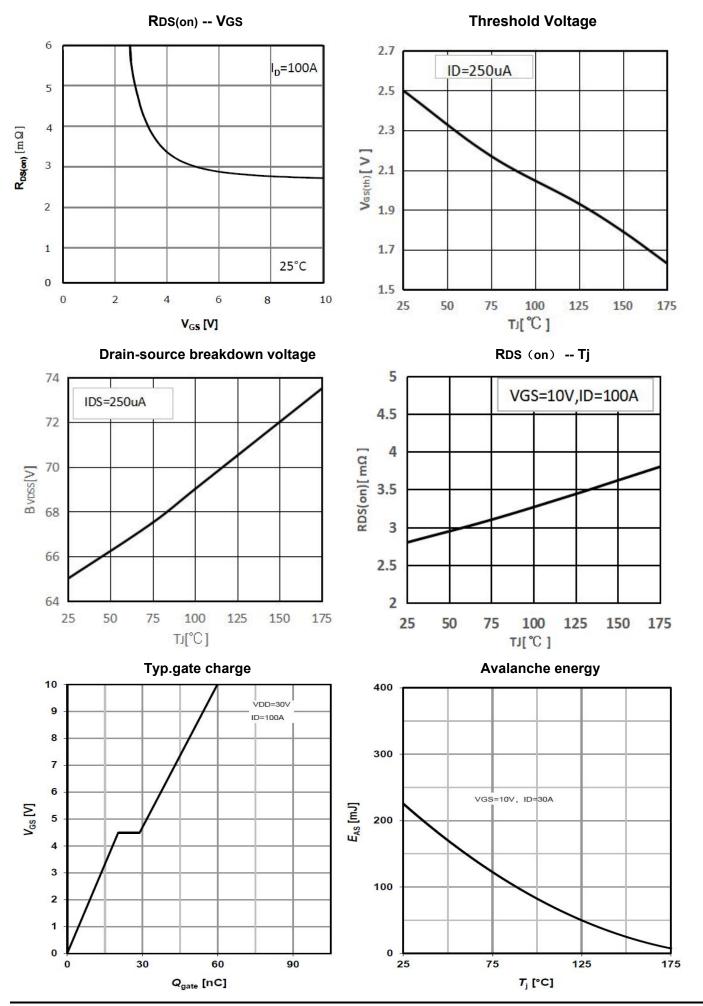
Parameter	Symbol	Limit		Unit
Drain-Source Voltage	V _{DS}	60		V
Gate-Source Voltage	V _G s	±20		V
Continuous Drain Current ¹	I _D	100		Α
Pulsed Drain Current ²	I _{DM}	400		Α
Single Pulse Avalanche Energy ²³	se Avalanche Energy ²³ Eas 225			mJ
Total Power Dissipation	P _D	125		W
Thermal Resistance from Junction to Case ²	Rejc	1.2		°C/W
Device on PCB ⁴	Reja	minimal footprint 62		
		6cm ² cooling area	40	
Operating Junction and Storage Temperature Range	TJ, Tstg	-55~ +175		$^{\circ}$
Soldering Temperature , for 10S(1.6mm from case)	-	260		°C

Notes:

- Current is limited by package; with a Rthjc = 1.2 °C/W the chip is able to carry 180A at 25°C.
 Specified by design. Not subject to production test.
 EAS condition: Tj=25°C,VDD=30V,L=0.5mH, RG=25Ω, ID=30A,Starting TJ =25°C.
 Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

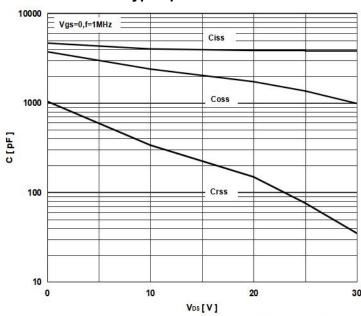
MOSFET ELECTRICAL CHARACTERISTICS

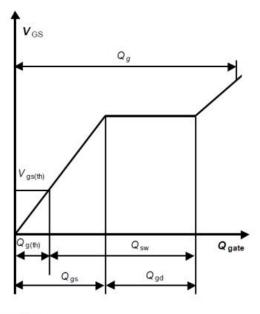

TC=25℃ unless otherwise specified

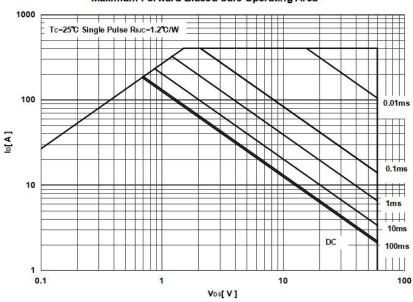

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Off characteristics	1						
Drain-source breakdown voltage	V(BR) DSS	V _{GS} = 0V, I _D =250μA	60			V	
Zero gate voltage drain current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μA	
Gate-body leakage current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±100	nA	
On characteristics	1		•				
Gate-threshold voltage	VGS(th)	V _{DS} =V _{GS} , I _D =250μA	2.0	2.5	3.0	V	
Static drain-source on-sate resistance	RDS(on)	V _{GS} =10V, I _D =100A		2.8	4.8	mΩ	
Forward transconductance	g _{FS}	V _{DS} =10V, I _D =100A		50		S	
Dynamic characteristics ¹			•				
Input capacitance	C _{iss}			3800	4950		
Output capacitance	Coss	V _{DS} =25V,V _{GS} =0V, f =1MHz		1358	1770	pF	
Reverse transfer capacitance	Crss			76	98		
Gate resistance	R _g	f=1MHz		2.4		Ω	
Switching characteristics ¹			•				
Total gate charge	Qg			60	70		
Gate-source charge	Q _{gs}	V _{GS} =0-10V, V _{DD} =30V, I _D =100A		20		nC	
Gate-drain charge	Q _{gd}			12	15		
Turn-on delay time	t _{d(on)}			18			
Turn-on rise time	t _r	V _{DD} =30V,ID=100A,		15			
Turn-off delay time	td(off)	V_{GS} =10V, R_{G} =5 Ω		35		ns	
Turn-off fall time	t _f			10		1	
Drain-Source Diode Characteristics							
Drain-source diode forward voltage	V _{SD}	V _{GS} =0V, I _S =100A			1.2	V	
Continuous drain-source diode forward Current ¹²	Is	-			100	А	
Pulsed drain-source diode forward current ¹	I _{SM}	-			400	Α	
Reverse recovery time ¹	Trr	I==100A,		55	88	ns	
Reverse recovery charge ¹	Qrr	dl/dt=100A/us,VR=30V		73		nC	

Note:

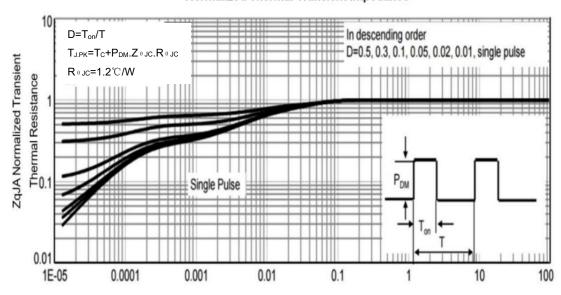
^{1.} Specified by design. Not subject to production test.

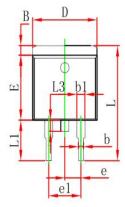

^{2.}Current is limited by package; with a Rthjc = 1.2 °C/W the chip is able to carry 180A at 25°C.

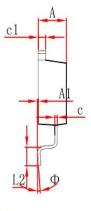


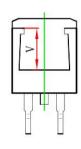


Gate charge waveforms

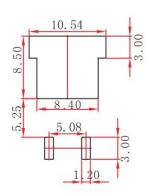



Maximum Forward Biased Safe Operating Area




Normalized Thermal Transient Impedance

TO-263-2L Package Outline Dimensions



Combal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	4.470	4.670	0.176	0.184	
A1	0.000	0.150	0.000	0.006	
В	1.120	1.420	0.044	0.056	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	10.010	10.310	0.394	0.406	
E	8.500	8.900	0.335	0.350	
е	2.540	TYP.	0.100 TYP.		
e1	4.980	5.180	0.196	0.204	
L	14.940	15.500	0.588	0.610	
L1	4.950	5.450	0.195	0.215	
L2	2.340	2.740	0.092	0.108	
L3	1.300	1.700	0.051	0.067	
Ф	0°	8°	0°	8°	
V	5.600	REF.	0.220	REF.	

TO-263-2L Suggested Pad Layout

Note:

- 1. Controlling dimension: in millimeters.
- 2. General tolerance:0.5mm.
- 3. The pad layout is for reference purposes only.

NOTICE

Cloudchild reserve the right to make modifications, enhancements, improvements, crrections or other changes without further notice to any product herein. Cloudchild does not assume any liability arising out of the application or use of any product described herein.

ChongQing Cloudchild Technology Co., Ltd. (short for Cloudchild) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Cloudchild products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that Cloudchild products are used within specified operating ranges as set forth in the most recent Cloudchild products specifications.

Date of change	Rev#	revise content
2023/11/16	A/0	/